A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
نویسندگان
چکیده
Many fungal pathogens invade plants by means of specialized infection structures called appressoria. In the rice (Oryza sativa) blast fungus Magnaporthe grisea, the pathogenicity mitogen-activated protein (MAP) kinase1 (PMK1) kinase is essential for appressorium formation and invasive growth. In this study, we functionally characterized the MST7 and MST11 genes of M. grisea that are homologous with the yeast MAP kinase kinase STE7 and MAP kinase kinase kinase STE11. Similar to the pmk1 mutant, the mst7 and mst11 deletion mutants were nonpathogenic and failed to form appressoria. When a dominant MST7 allele with S212D and T216E mutations was introduced into the mst7 or mst11 mutant, appressorium formation was restored in the resulting transformants. PMK1 phosphorylation also was detected in the vegetative hyphae and appressoria of transformants expressing the MST7(S212D T216E) allele. However, appressoria formed by these transformants failed to penetrate and infect rice leaves, indicating that constitutively active MST7 only partially rescued the defects of the mst7 and mst11 mutants. The intracellular cAMP level was reduced in transformants expressing the MST7(S212D T216E) allele. We also generated MST11 mutant alleles with the sterile alpha motif (SAM) and Ras-association (RA) domains deleted. Phenotype characterizations of the resulting transformants indicate that the SAM domain but not the RA domain is essential for the function of MST11. These data indicate that MST11, MST7, and PMK1 function as a MAP kinase cascade regulating infection-related morphogenesis in M. grisea. Although no direct interaction was detected between PMK1 and MST7 or MST11 in yeast two-hybrid assays, a homolog of yeast STE50 in M. grisea directly interacted with both MST7 and MST11 and may function as the adaptor protein for the MST11-MST7-PMK1 cascade.
منابع مشابه
A Mitogen-Activated Protein Kinase Cascade Regulating Infection-Related Morphogenesis in Magnaporthe grisea W
Many fungal pathogens invade plants by means of specialized infection structures called appressoria. In the rice (Oryza sativa) blast fungus Magnaporthe grisea, the pathogenicity mitogen-activated protein (MAP) kinase1 (PMK1) kinase is essential for appressorium formation and invasive growth. In this study, we functionally characterized the MST7 and MST11 genes of M. grisea that are homologous ...
متن کاملCellular localization and role of kinase activity of PMK1 in Magnaporthe grisea.
A mitogen-activated protein (MAP) kinase gene, PMK1, is known to regulate appressorium formation and infectious hyphal growth in the rice blast fungus Magnaporthe grisea. In this study, we constructed a green fluorescent protein gene-PMK1 fusion (GFP-PMK1) to examine the expression and localization of PMK1 in M. grisea during infection-related morphogenesis. The GFP-PMK1 fusion encoded a functi...
متن کاملIndependent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea.
The phytopathogenic fungus Magnaporthe grisea elaborates a specialized infection cell called an appressorium with which it mechanically ruptures the plant cuticle. To generate mechanical force, appressoria produce enormous hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control of cellular turgor, we analyzed the response of M. grisea to hyperosmo...
متن کاملMultiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea.
Rice blast fungus (Magnaporthe grisea) forms a highly specialized infection structure for plant penetration, the appressorium, the formation and growth of which are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase cascade. We characterized the MST50 gene that directly interacts with both MST11 and MST7. Similar to the mst11 mutant, the mst50 mutant was defective in appressorium...
متن کاملMAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea.
Magnaporthe grisea produces an infection structure called an appressorium, which is used to breach the plant cuticle by mechanical force. Appressoria generate hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control and biochemical mechanism for turgor generation, we assayed glycerol biosynthetic enzymes during appressorium development, and the mov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2005